SoftwareSwift Square poster

For information about Nion Swift, please see

Conference Presentations

M&M 2021

Recorded Nion presentations from the virtual M&M 2021 conference:

Tracy Lovejoy —
Advances in Angle Resolved EELS
Ondrej Krivanek —
Plenary Session (Physical Science): Aberration Correction in Electron Microscopy and Spectroscopy
Unfortunately, we are unable to provide a recording of this live session. The slides are available here.

M&M 2020

Recorded Nion presentations from the virtual M&M 2020 conference:

Ondrej Krivanek —
Damage-free Analysis of Biological Materials by Vibrational Spectroscopy in the Electron Microscope
Niklas Dellby —
Ultra-High Energy Resolution EELS

Tracy Lovejoy —
Angle-Resolved Electron Energy Loss Spectroscopy
Ben Plotkin-Swing —
Hybrid Pixel EELS Detector: Low Noise, High Speed, and Large Dynamic Range

Ondrej Krivanek —
Instrumentation for EM: past, present, future (pre-meeting workshop)

Nion-related Publications

Key publications on Nion microscopes and the work done with them:

  • Two-dimensional spatial mapping of phonons in a single silicon–germanium quantum dot:
    C.A. Gadre, X. Yan, Q. Song, J. Li, L. Gu, H. Huyan, T. Aoki, S.-W. Lee, G. Chen, R. Wu, and X. Pan (2022) "Nanoscale imaging of phonon dynamics by electron microscopy" Nature 606, 292-297
  • Phonon spectroscopy across a stacking fault in SiC at the nanoscale:
    X. Yan, C. Liu, C.A. Gadre, L. Gu, T. Aoki, T.C. Lovejoy, N. Dellby, O.L. Krivanek, D.G. Schlom, R. Wu, and X. Pan (2021) "Single-defect phonons imaged by electron microscopy" Nature 589, 65-69
  • Characterization of a new hybrid pixel direct detector and demonstration of its suitability for EELS:
    B. Plotkin-Swing, G.J. Corbin, S. De Carlo, N. Dellby, C. Hoermann, M.V. Hoffman, T.C. Lovejoy, C.E. Meyer, A. Mittelberger, R. Pantelic, L. Piazza, and O.L. Krivanek (2020) "Hybrid pixel direct detector for electron energy loss spectroscopy" Ultramicroscopy 217, 113067
  • Detection of the vibrational signal from a single Si atom in graphene using a Nion microscope:
    F.S. Hage, G. Radtke, D.M. Kepaptsoglou, M. Lazzeri, and Q.M. Ramasse (2020) "Single-atom vibrational spectroscopy in the scanning transmission electron microscope" Science 367, 1124-1127
  • The Nion EELS and monochromator working in conjunction for vibrational spectroscopy:
    J.A. Hachtel, J. Huang, I. Popovs, S. Jansone-Popova, J.K. Keum, J. Jakowski, T.C. Lovejoy, N. Dellby, O.L. Krivanek, and J.-C. Idrobo (2019) "Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope" Science 363, 525-528
  • Ongoing improvements of the monochromated Nion microscope's resolution:
    T.C. Lovejoy, G.C. Corbin, N. Dellby, M.V. Hoffman, and O.L. Krivanek (2018) "Advances in Ultra-High Energy Resolution STEM-EELS" Microscopy and Microanalysis 24, 446-447
  • Introduction of the new Nion side-entry stage:
    M.T. Hotz, G. Corbin, N. Dellby, and T.C. Lovejoy (2018) "Optimizing the Nion STEM for In-Situ Experiments" Microscopy and Microanalysis 24, 1132-1133
  • Demonstration of nanoscale mapping of optical and acoustic phonons using the Nion STEM:
    F.S. Hage, R.J. Nicholls, J.R. Yates, D.G. McCulloch, T.C. Lovejoy, N. Dellby, O.L. Krivanek, K. Refson, and Q.M. Ramasse (2018) "Nanoscale momentum-resolved vibrational spectroscopy" Science Advances 4, eaar7495
  • Demonstration of spatial mapping of optical and acoustic, bulk and surface vibrational modes in magnesium oxide:
    M.J. Lagos, A. Trügler, U. Hohenester, and P.E. Batson (2017) "Mapping vibrational surface and bulk modes in a single nanocube" Nature 543, 529-532
  • Invited review summarizing developments in aberration-corrected STEM including 5th order correction:
    O.L. Krivanek, T.C. Lovejoy, and N. Dellby (2015) "Aberration‐corrected STEM for atomic‐resolution imaging and analysis" Journal of Microscopy 259, 165-172
  • Discussion of Nion Swift as a software platform for microscopy:
    C.E. Meyer, N. Dellby, Z. Dellby, T.C. Lovejoy, M.C. Sarahan, G.S. Skone, and O.L. Krivanek (2014) "Using Nion Swift for Data Collection, Analysis and Display" Microscopy and Microanalysis 20, 1108-1109
  • Results from the first Nion monochromator and its application to vibrational spectroscopy:
    O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, E. Soignard, J. Zhu, P.E. Batson, M.J. Lagos, R.F. Egerton, and P.A. Crozier (2014) "Vibrational spectroscopy in the electron microscope" Nature 514, 209-212
  • Design and development of the Nion monochromator:
    O.L. Krivanek, T.C. Lovejoy, M.F. Murfitt, G.S. Skone, P.E. Batson, N. Dellby (2014) "Towards sub-10 meV energy resolution STEM-EELS" J. Phys. Conf. Series 522, 012023
  • Results from the integration of a Bruker X-ray detector into the Nion UltraSTEM:
    T.C. Lovejoy, Q.M. Ramasse, M. Falke, A. Kaeppel, R. Terborg, R. Zan, N. Dellby, and O.L. Krivanek (2012) "Single atom identification by energy dispersive x-ray spectroscopy" 100, 154101
  • An article describing the Nion UltraSTEM 200, especially its CFE gun and performance:
    N. Dellby, N.J. Bacon, P. Hrncirik, M.F. Murfitt, G.S. Skone, Z.S. Szilagyi and O.L. Krivanek (2011) "Dedicated STEM for 200 to 40 keV operation" The European Physical Journal Applied Physics 54, 33505 (11 pages).
  • Nature cover First atom-by-atom identification of every atom present in a significant part of a non-periodic sample (performed using a Nion UltraSTEM 100):
    (The front cover of Nature from March 25th, 2010)
    Ondrej L. Krivanek, Matthew F. Chisholm, Valeria Nicolosi, Timothy J. Pennycook, George J. Corbin, Niklas Dellby, Matthew F. Murfitt, Christopher S. Own, Zoltan S. Szilagyi, Mark P. Oxley, Sokrates T. Pantelides , and Stephen J. Pennycook (2010) "Atom-by-atom structural and chemical analysis by annular dark field electron microscopy" Nature 464 (2010) 571-574.
  • Description of research possible with the Nion UltraSTEM at 60 kV, such as imaging a single atom oscillating between two positions:
    Ondrej L. Krivanek, Niklas Dellby, Matthew F. Murfitt, Matthew F. Chisholm, Timothy J. Pennycook, Kazutomo Suenaga and Valeria Nicolosi (2010) "Gentle STEM: ADF imaging and EELS at low primary energies" Ultramicroscopy 110 935-945
  • Description of the design of Nion's new monochromator:
    Ondrej L. Krivanek, Jonathan P. Ursin, Neil J. Bacon, George J. Corbin, Niklas Dellby, Petr Hrncirik, Matthew F. Murfitt, Christopher S. Own, and Zoltan S. Szilagyi (2009) "High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy" Phil. Trans. R. Soc. A 367 3683-3697.
  • First atomic-resolution compositional and bonding mapping by EELS done in less than 1 minute (performed using a Nion UltraSTEM 100):
    D. A. Muller, L. Fitting Kourkoutis, M. Murfitt, J. H. Song, H. Y. Hwang, J. Silcox, N. Dellbyand , O. L. Krivanek. (2008) "Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy", Science 319, 1073.
  • Technical description of the design of the UltraSTEM 100:
    Krivanek O.L., Corbin G.J., Dellby N., Elston B.F., Keyse R.J., Murfitt M.F., Own C.S., Szilagyi Z.S., Woodruff J.W. (2008) "An electron microscope for the aberration-corrected era", Ultramicroscopy 108, 179.
  • First demonstration of atomic-resolution EELS mapping (performed using a VG HB501 STEM with a Nion aberration corrector):
    Bosman M., Keast V.J., Garcia-Munoz J. L. , D’Alfonso A. J., Findlay S. D., and Allen L.J. (2007) "Two-Dimensional Mapping of Chemical Information at Atomic Resolution", Phys Rev Lett. 99, 086102.
  • Technical description of the Nion C3/C5 corrector:
    Dellby N., Krivanek O.L. and Murfitt M.F. (2006) "Optimized quadrupole-octupole C3/C5 corrector for STEM", CPO-7 proceedings, p. 97.
  • First demonstration of directly interpretable deep sub-A resolution in an electron microscope (performed using a VG HB603 STEM with a Nion aberration corrector):
    Nellist P.D., M. F. Chisholm, N. Dellby, O. L. Krivanek, M. F. Murfitt, Z. S. Szilagyi, A. R. Lupini, A. Borisevich, W. H. Sides and S. J. Pennycook, (2004) "Direct sub-angstrom imaging of a crystal lattice"Science 305, 1741-1741.
  • First identification of a single atom in a bulk solid by EELS (performed using a VG HB501 STEM with a Nion aberration corrector):
    Varela M., Findlay S.D., Lupini A.R., Christen H.M., Borisevich A.Y., Dellby N., Krivanek O.L., Nellist P.D., Oxley M.P., Allen L.J. and Pennycook S.J. (2004) "Spectroscopic Imaging of Single Atoms Within a Bulk Solid ", Phys. Rev. Lett. 92, 095502.
  • First directly interpretable sub-Å imaging in an electron microscope (performed using a VG HB501 STEM with a Nion aberration corrector):
    Batson P.E., Dellby N. and Krivanek O.L. (2002) "Sub-ångstrom resolution using aberration corrected electron optics", Nature 418, 617.
  • First working quadrupole/octupole probe Cs corrector:
    Krivanek O.L., Dellby N., Spence A.J., Camps R.A., and Brown L.M. (1997) "Aberration correction in the STEM", in: Inst. Phys. Conf. Ser. 153 (Proceedings 1997 EMAG meeting) Ed. Rodenburg JM, 35.
    and O.L. Krivanek, N. Dellby and A.R. Lupini (1999) "Towards sub-Å electron beams" Ultramicroscopy 78, 1-11.

Reviews and Background

Books, book chapters, reviews and general references on STEM and aberration correction:

  • A brief history of the Cambridge project to correct the spherical aberration of the scanning transmission electron microscope
    L.M. Brown, P.E. Batson, N. Dellby, and O.L. Krivanek (2015) "Brief history of the Cambridge STEM aberration correction project and its progeny", Ultramicroscopy 157, 88-90.
  • An up-to-date volume on modern STEM, with chapters on STEM history, ADF imaging, EELS, X-ray spectroscopy, low energy STEM, etc., with emphasis on the results from the latest aberration-corrected instruments. It deserves to be on the bookshelf of everyone active in the STEM field:
    S.J. Pennycook and P.D. Nellist, editors (2011) "Scanning Transmission Electron Microscopy: Imaging and Analysis" (Springer, New York).
  • The Nion chapter in the above volume, summarizing progress in low-energy aberration-corrected STEM:
    O.L. Krivanek, M.F. Chisholm, N. Dellby and M.F. Murfitt (2011) "Atomic-resolution STEM at low primary energies", in: S.J. Pennycook and P.D. Nellist (editors) "Scanning Transmission Electron Microscopy: Imaging and Analysis" (Springer, New York) 613-656.
  • A readable, broad but brief introduction to aberration-corrected electron microscopy, with chapters on CTEM and STEM imaging, electron optics and aberration correction:
    R. Erni "Aberration-Corrected Imaging in Transmission Electron Microscopy – An Introduction" (Imperial College Press, London, 2010, distributed by World scientific Publishing, Singapore).
  • A book with chapters on several types of charged-particle optical instruments, including electron microscopes:
    Orloff, J. (editor) "Handbook of charged particle optics", 2nd ed. (Boca Raton: CRC Press, 2009).
  • The Nion chapter in the above volume, which gives a brief history of aberration correction in electron microscopy, explains the optics of aberration correctors, describes how autotuning is done, and gives practical examples of applications:
    Krivanek, O.L. et al. (2009) "Aberration correction in electron microscopy", in: Orloff J. (editor), Handbook of charged particle optics, 2nd ed. (Boca Raton: CRC Press) 601-640.
  • Harald Rose’s comprehensive book on electron optics, with several charters on aberration correction. A comprehensive theoretical treatment, not for those seeking a light introduction:
    H. Rose "Geometrical Charged Particle Optics" (Springer, Heidelberg, 2009).
  • A volume dedicated to aberration correction, with chapters by Rose, Haider, Krivanek et al., Bleloch et al., Batson, and Pennycook et al. among others:
    Hawkes, P.W. (editor) Advances in imaging and electron physics, vol. 153: Aberration-corrected electron microscopy. (Academic Press, London, 2008).
  • The Nion chapter in the above volume, describing how an aberration-corrected STEM works in practice. It discusses how to best set up the STEM for operation, how to calculate the expected resolution, and what some of the major applications of aberration-corrected STEM are:
    Krivanek, O.L. et al. (2008) "Aberration-corrected STEM and EELS", in: Hawkes P.W. (Ed.), Advances in imaging and electron physics, vol. 153. (Academic Press, London) 121-155.
  • History of electron optics from a French perspective, with emphasis on aberration correction:
    Hawkes P.W. (2004) "Recent advances in electron optics and electron microscopy", Annales de la Fondation Louis de Broglie, 29, Hors série 1, 837-55.
  • Brief but broad summary of aberration correction research:
    Hawkes P.W. (2001) "The long road to spherical aberration correction", Biology of the Cell 93, 432−439.
  • Nearly everything you need to know about high resolution STEM (prior to aberration correction), explained by its inventor in 21 pages. This prescient article is not often referenced, and it deserves much greater recognition:
    Crewe A.V. (1980) "The physics of the high-resolution scanning microscope", Rep. Prog. Phys. 43, 621.

Historical Foundations

Key research leading to the resolution of transmission electron microscopes being improved by aberration correctors:

  • Theoretical proof that Cs and Cc are unavoidable with round electron lenses:
    Scherzer O. (1936) "Über einige Fehler von Elektronenlinsen", Z. Physik 101, 593.
  • Theoretical analysis of different ways to correct aberrations of round electron lenses, first corrector design proposals:
    Scherzer O. (1947) "Spharische und chromatische korrektur von elktronen-linsen", Optik 2,114.
  • First proof-of-principle results from a Cs/Cc corrector based on Scherzer’s design:
    Seeliger R. (1953) "Über die justierung spharisch korrigierter elektronenoptischer systeme", Optik 10, 29. Möllenstedt G. (1956) "Elektronenmikroskopische bilder mit einem nach. O. Scherzer spharisch korrigierten Objektiv", Optik 13, 209.
  • First proposal for a quadrupole-octupole Cs corrector:
    Archard G.D. (1955) "2 new simplified systems for the correction of spherical aberration in electron lenses", Proc. Roy Soc. B68 156.
  • First proof-of-principle results from a quadrupole/octupole probe Cs corrector:
    Deltrap J.H.M. (1964a) "Correction of spherical aberration with combined quadrupole-octopole units", Proc. EUREM-3, Prague, 45.
  • First proposal for achromatic quadrupoles:
    Yavor S. Ya., Dymnikov A.D. and Ovsyannikova L.P. (1964) " Achromatic quadrupole lenses" , Nucl. Instrum. Meth., 26, 13
  • First proof-of-principle results from a quadrupole/octupole Cs/Cc corrector:
    D.F. Hardy (1967) Ph. D. dissertation, University of Cambridge
  • Summary of the achievements of the quadrupole-octupole Cs/Cc Scherzer/Rose Darmstadt corrector:
    Koops H. (1978) "Aberration Correction in Electron Microscopy", Proc. Int. EM Congr., Toronto 3, 185.
  • First proposal for using sextupoles as a Cs-correcting element:
    Beck V. (1979) "Hexapole spherical-aberration corrector", Optik 53, 241.
  • First theoretical design for a C3/C5 sextupole/round lens/sextupole corrector:
    Shao Z. (1988) "On the fifth order aberration in a sextupole corrected probe forming system", Rev. Sci. Instrum. 59, 2429.
  • First paper showing proof-of-principle results from a sextupole/round lens/sextupole probe Cs corrector, based on a Crewe design:
    Chen E. and Mu C. (1990) "New development in correction of spherical aberration of electro- magnetic round lens" Proc. Int. Symp. Electron Microscopy, K. Kuo and J. Yao, eds, World Scientific, p. 28.
  • Theoretical design on which the CEOS sextupole/round lens/sextupole corector is based:
    Rose H. (1990) "Outline of a spherically corrected semiaplanatic medium-voltage transmission electron-microscope", Optik 85, 19.
  • Description of the progress towards the first working sextupole/round lens/sextupole image Cs corrector:
    Haider M., Braunshausen G. and Schwan E. (1995) "Correction of the spherical-aberration of a 200-KV TEM by means of a hexapole-corrector", Optik 99, 167.
  • Description of progress towards the first working quadrupole-octupole probe Cs corrector:
    O.L. Krivanek, N. Dellby and L.M. Brown (1996) " Spherical aberration corrector for a dedicated STEM" , Proceedings 11th European EM Congress 1, 352-353.
    O.L. Krivanek, N. Dellby, A.J. Spence, R.A. Camps and L.M. Brown (1997) " On-line aberration measurement and correction in STEM" , Proceedings 55th MSA meet. 1171-1172.
  • First papers showing practical results from the Krivanek/Dellby aberration corrector built in Cambridge UK:
    Krivanek O.L., Dellby N., Spence A.J., Camps R.A., and Brown L.M. (1997) "Aberration correction in the STEM", in: Inst. Phys. Conf. Ser. 153 (Proceedings 1997 EMAG meeting) Ed. Rodenburg JM, 35.
    and O.L. Krivanek, N. Dellby and A.R. Lupini (1999) "Towards sub-Å electron beams" Ultramicroscopy 78, 1-11.
  • First papers showing practical results from the CEOS sextupole/round lens/sextupole image Cs corrector:
    M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius and K. Urban (1998) " Electron microscopy image enhanced" , Nature 392, 768-769.
    and Haider M., Rose H., Uhlemann S., Kabius B., and Urban K. (1998) "Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope", Journal of Electron Microscopy 47, 395.
  • First report showing better directly-interpretable resolution obtained with an aberration-corrected electron microscope than with any other electron microscope (including high voltage TEMs) up to that date:
    Batson P.E., Dellby N. and Krivanek O.L. (2002) "Sub-ångstrom resolution using aberration corrected electron optics", Nature 418, 617.
    Press release from IBM's TJ Watson Research Center accompanying this article.