Aberration correction in electron microscopy and spectroscopy

Ondrej L. Krivanek, microscope builders at Nion Co., and Nion microscope users the world over

Why is aberration correction important?

Resolution became better, much fainter objects became visible. In electron microcopy, spherical aberration was just as limiting as it was for the Hubble.

(S)TEM aberration correction:

50 years from first concepts to successful finish

1936: Scherzer's Theorem: round electron lenses have unavoidable spherical and chromatic aberration.

1947: Scherzer describes several approaches to aberration correction. The most promising: break cylindrical symmetry - use non-round optics to correct aberrations.

1953-1985: several proof-of principle correctors are built, but none of them reaches better spatial resolution than the uncorrected instrument.
1997 Haider, Rose et al. improve the resolution of a conventional TEM by C_{s} correction, in Heildeberg in Germany.
1997 Brown, Dellby, Krivanek et al. improve the resolution of a scanning transmission electron microscope (STEM) by C_{s} correction, in Cambridge UK.
2001-2003 Krivanek and Dellby mark II corrector reaches direct resolution <1 Å - better than any other microscope in the world at that time. Aberration correction takes off.
2020 Electron microscope aberration correction honored by the Kavli Prize in Nanoscience

(S)TEM aberration correction:

50 years from first concepts to successful finish

Kavli NanoScience Prize winners, 2020
"For sub-ångström resolution imaging and chemical analysis using electron beams."
...the Laureates constructed aberration corrected lenses and made sub-ångström imaging and chemical analysis in three dimensions a standard characterization method.

600 kV non-corrected electron microscope

High resolution electron microscope (HREM) built in Cambridge UK ca 1980.

Weight ~ 10 tons, a building wing was needed to house it. Resolution $\sim 2 \AA$ at 600 kV .

HREM at this resolution unlocked many "atomic secrets".

Au surface reconstruction
(Marks and Smith)

100 kV Cs-corrected STEM

Image of instrument at Nion

Instrument schematic

Aberration-corrected VG STEM built at Nion, 2000.

Weight ~ 1 ton, operated in a converted garage.

Resolution $\sim 1 \AA$ at 100 kV . 0.78 Å at 300 kV .

The corrector and the microscope have since been improved substantially.

Updated versions reach 0.5 Å resolution at 200 kV .

Results from Nion-corrected VG STEMs

Si image FFTs

Corrected VG HB501:

Si (110) HADF image showing spacings down to $0.76 \AA$ in a diffractogram.
P.E. Batson et al., Nature 418 (2002) 617.

Corrected VG HB603:

Resolving 0.78 Å dumbbells in (210) Si.
P.D. Nellist et al., Science 305 (2004) 1741.

5 OAK
 RIDGE

First direct imaging of sub-Å structures in any type of electron microscope.

Progress in single atom imaging by ADF STEM

The resolution has improved, and so has the stability.

BN monolayer with impurities imaged by MAADF

Result of DFT calculation overlaid on an experimental image

BN monolayer with impuritie

Result of DFT calculation overlaid on an experim ϵ^{8}

Elements mapped by annular

 dark field electron microscopyMEASURING SCIENCE Rethinking a flawed system

Results from CEOS-corrected FEI TEMs

Aberration-corrected TEM image of twin boundary in BaTiO_{3}. The local intensity values indicate that only 40 and 70% of the O column sites are occupied. Jia and Urban, Science 303 (2004) 2001.

Aberration-corrected TEM image of a hole in a single layer of graphene. Inset shows an averaged image with improved resolution. Girit et al., Science 323 (2009) 1706.

Primary analytical signals available in a STEM

In the scanning transmission electron microscope (STEM) an electron probe, with $\sim 10^{10}$ fast e- per second and smaller than one atom, is scanned across the sample. Many types of interactions of the fast electrons with the sample can be detected, typically in parallel.

Key primary signals:

1) Coherent electron scattering: $B F$ imaging, holography, ptychography
2) Incoherent electron scattering (from the atomic nucleus), i.e. Rutherford scattering: HAADF imaging
3) Inelastic scattering by sample's electrons: regular electron energy loss spectroscopy (EELS)

Going further: atomic-resolution chemical mapping

Electron energy loss spectra (EELS) of $\mathrm{La}_{0.7} \mathrm{Sr}_{0.3} \mathrm{MnO}_{3} / \mathrm{SrTiO}_{3}$ multilayer structure. Nion UltraSTEM, 100 keV .

Elemental maps constructed by quantifying EELS spectra at every pixel
Muller et al., Science 319, (2008) 1073

nion

Fast multi-pass chemical mapping

 Dectris ELA hybrid pixel detector, sample courtesy U.C. Irvine

Time-resolved and multi-pass chemical mapping is now possible.

Imaging single Si atom impurities in graphene

Can we determine the bonding environment of a single atom?

Probing the bonding of individual atoms by EELS

Lines: experimental EELS spectra recorded in UltraSTEM100

Solid spectra: simulations.
Ramasse et al., Nano Letts (2013), DOI: 10.1021/ nl304187e

Zhou et al., Phys. Rev. Lett. (2012)109: 206803
\rightarrow atomic environment of a single atom determined by EELS

Progress in EM spatial resolution

Denis Gabor (The Electron Microscope, 1948):
"Resolution [quest] will have to stop at $0.5 \AA$, due to lack of objects."

Progress in EELS-in-the-EM energy resolution

The quest for better energy resolution has not come up against any insurmountable obstacles yet, and further progress is very likely.

Recent progress in STEM-EELS energy resolution

2010: Zeiss SESAM, CEOS Ω MC,
Zeiss Mandoline EELS, 200 kV , 100 ms

2013: Nion HERMES, Gatan EELS, 60 kV , 2 ms (16 meV FWHM ZLP in 55 msec)

2021: Nion HERMES, Nion Iris EELS, 30 kV , $300 \times 3 \mathrm{~ms}$ (aligned)

All spectra plotted on the same horizontal scale.
Note also the differences in the extent of the ZLP "tail".

EELS energy resolution in the EM has improved $\sim 16 x$ in one decade.

Nion ultra-high resolution monochromator

Nion U-HERMES ${ }^{\text {Tm* }}$ STEM and Iris EELS

Comparison with non-monochromated EELS

The $0-500 \mathrm{meV}$ spectrum region contains vibrational (phonon) losses and is of great interest.

Before high-energyresolution
monochromated
EELS, this region was hidden by the tail of the ZLP.

First glimpses of phonons in the STEM (2014)

Two types of phonon (vibrational) scattering

A) Dipole scattering:

the fast electron interacts with the whole charge distribution in a polar material.
The scattering angle is small, and the interaction distance is large.

It is similar to the way infrared photons interact with matter.

Dipole scattering can be selected by placing a small beam away from the sample (aloof spectroscopy) and emphasized by selecting small angles with an aperture.

electrons surrounding atoms of different valences
B) Impact scattering: the fast electron passes close to an individual atomic nucleus, transfers a small amount of energy to it, and is scattered by a large angle.

It is similar to the way neutrons scatter from matter.

Impact scattering can be selected by an aperture placed at finite angles in the diffraction plane, and emphasized by placing a small beam close to an atomic nucleus.

Using dipole scattering to analyze hydrogen bonding

Guanine crystals from Koi fish scales, examined by aloof beam spectroscopy

With the beam 30 nm outside the sample, there is essentially no radiation damage.
Sample courtesy Dwir Gur, Sharon Wolf \& Hagai Cohen (Weizmann Institute, Israel)
nion

Anhydrous guanine: aloof EELS-FTIR comparison

EEL spectrum recorded in "aloof" mode, with ~ 2 nm \varnothing probe $\sim 30 \mathrm{~nm}$ in vacuum (to minimize radiation damage), compared to a Fourier Transform IR (FTIR) spectrum.

Peak	Energy $(\mathbf{m e V})$	Frequency $\left(\mathbf{c m}^{-1}\right)$	Assignment
a	209	1666	$\mathrm{C}=\mathrm{O}$ stretch
b	334	2663	$\mathrm{C}-\mathrm{H}$ stretch
c	357	2846	$\mathrm{~N}-\mathrm{H}$ stretch
d	386	3078	Symmetric NH_{2}
e	411	3277	Antisymmetric NH_{2}

Peter Rez et al., Nature Coms (2016) DOI: 10.1038/ncomms 10945

Biological samples can be analyzed in a damage-free way.

Detecting isotopic substitution in L-alanine

Substituting ${ }^{13} \mathrm{C}$ for ${ }^{12} \mathrm{C}$ at indicated site lowers the $\mathrm{C}=\mathrm{O}$ bond stretch vibration by 4.8 meV and is readily detectable.

The distributions of the two species can be mapped at $\sim 30 \mathrm{~nm}$ resolution.

> J. Hachtel et al.

Science 363 (2019) 525-528

Isotopic substitution can be used to study metabolic pathways in cells and whole organisms.

Momentum-Energy-Temperature exploration in the EM

- Peaks are red-shifted at high temperature
- Opposite effect expected from thermal expansion of lattice
- Origin is phonon-phonon scattering

Lovejoy et al. (2021) unpublished

OAK
RIDGE
Nithomitlaboritan
Protochips

Detecting vibrational changes at a single stacking fault

Optical phonon do not change at a stacking fault in cubic SiC . But acoustic phonons do change!
\rightarrow Step 1: select $\mathrm{q} \gg 0$, show the changes at stacking fault

\rightarrow Step 2: map the signal in real space

min

Phonon changes at individual defects detected.
X. Yan et al., Nature 589 (2021) 65-69

Phonons due to a single Si atom in graphene

Phonon spectrum of a single Si atom has been recorded.

Summary

- Aberration-corrected (S)TEM and ultra-high energy resolution EELS have progressed remarkably since the 1990s.
- There have been major developments in both instrumentation and in theory.
- Many new capabilities are now available, leading to major new results.

Low-kV atom. res.
STEM (2010)

Damage-free EELS (2016)

Isotopic substitution in biological molecules (2019)

Efficient q- Ω analysis (2019)

Phonon spectrum of a single atom (2020)

Conclusion: new instruments do open up new worlds!

Galileo Galilei and two of his telescopes

Niklas Dellby (Nion co-founder), Christian Colliex, Odile Stephan, Katia March, Marcel Tence and the first complete aberration-corrected EM Nion built, for CNRS Orsay

Galileo's telescope changed our view of the world. Aberration-corrected electron microscopes and spectrometers are changing our view of the nanoworld.

Acknowledgements

Nion: Tracy Lovejoy, Niklas Dellby, Neil Bacon, Andrew Bleloch, George Corbin, Mike Hotz, Petr Hrncirik, Chris Meyer, Andreas Mittelberger, Ben Plotkin-Swing, Gwyn Skone, Zolltan Szilagyi, and the microscope construction team.

Funding by DOE, NSF, EPSRC, and several other agencies

Questions?
krivanek@nion.com

Mick Brown and Archie Howie (Cambridge U.)
Phil Batson, Maureen Lagos (Rutgers U.)
Peter Nellist (Oxford U.), Valeria Nicolosi (TCD) Quentin Ramasse, Fredrik Hage et al. (Daresbury SuperSTEM)
John Silcox, Lina Kourkoutis, David Muller et al. (Cornell U.)
Christian Colliex, Odile Stephan, Mathieu Kociak, Alex Gloter, Louis Tizei, Marcel Tence (CNRS Orsay) Juan-Carlos Idrobo, Jordan Hachtel, Matt Chisholm,

Steve Pennycook, Wu Zhu et al. (ORNL)
Ray Carpenter, Peter Crozier, Peter Rez, Katia March et al. (ASU)
Janik Meyer, Jani Kotakoski, Toma Susi, Clemens Mangler et al. (U. Vienna)
Rhonda Stroud (NRL)
Xingxu Yan, Xiaoqing Pan et al. (UC Irvine) Benedikt Haas, Johannes Müller, Christoph Koch et
al. (HU Berlin)

Alan Maigne, George Sawatzky (UBC) Nabil Bassim, Maureen Lagos, Gianluigi Bottom (CCEM), and many others

